Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Vaccine ; 41(27): 4009-4018, 2023 Jun 19.
Article in English | MEDLINE | ID: covidwho-20243650

ABSTRACT

BACKGROUND: Maternal pertussis immunization using Tdap vaccine is recommended in many countries to protect newborns from severe post-natal infection. Immunological changes during pregnancy may influence the response to vaccines. The quality of IgG and memory B cell responses to Tdap immunization in pregnant women has not yet been described. METHODS: The impact of pregnancy on the response to Tdap vaccination was assessed by comparing humoral immune responses in 42 pregnant and 39 non-pregnant women. The levels of serum pertussis antigens and tetanus toxoid-specific IgG, IgG subclasses, IgG Fc-mediated effector functions, as well as memory B cell frequencies were assessed before and at several time points after vaccination. RESULTS: Tdap immunization induced similar levels of pertussis and tetanus-specific IgG and IgG subclasses in pregnant and non-pregnant women. Pregnant women produced IgG promoting complement deposition, and neutrophils and macrophages phagocytosis at levels comparable to non-pregnant women. They were also able to expand pertussis and tetanus-specific memory B cells at similar frequencies as non-pregnant women, suggesting equivalent "boostability". Higher levels of vaccine-specific IgG, IgG subclasses, and IgG Fc-mediated effector functions were detected in cord blood as compared to maternal blood, indicating efficient transport across the placenta. CONCLUSIONS: This study demonstrates that pregnancy does not affect the quality of effector IgG and memory B cell responses to Tdap immunization and that polyfunctional IgG are efficiently transferred across the placenta. REGISTRY'S URL AND THE TRIAL'S REGISTRATION NUMBER: ClinicalTrials.Gov (NCT03519373).


Subject(s)
Diphtheria-Tetanus-acellular Pertussis Vaccines , Tetanus , Whooping Cough , Female , Humans , Infant, Newborn , Pregnancy , Antibodies, Bacterial , Immunoglobulin G , Memory B Cells , Tetanus/prevention & control , Vaccination , Whooping Cough/prevention & control
2.
Am J Transplant ; 23(5): 649-658, 2023 05.
Article in English | MEDLINE | ID: covidwho-2231766

ABSTRACT

As solid organ transplant recipients are at high risk of severe COVID-19 and respond poorly to primary SARS-CoV-2 mRNA vaccination, they have been prioritized for booster vaccination. However, an immunological correlate of protection has not been identified in this vulnerable population. We conducted a prospective monocentric cohort study of 65 kidney transplant recipients who received 3 doses of BNT162b2 mRNA vaccine. Associations among breakthrough infection (BTI), vaccine responses, and patient characteristics were explored in 54 patients. Symptomatic COVID-19 was diagnosed in 32% of kidney transplant recipients during a period of 6 months after booster vaccination. During this period, SARS-CoV-2 delta and omicron were the dominant variants in the general population. Univariate Analyses identified the avidity of SARS-CoV-2 receptor binding domain binding IgG, neutralizing antibodies, and SARS-CoV-2 S2-specific interferon gamma responses as correlates of protection against BTI. No demographic or clinical parameter correlated with the risk of BTI. In multivariate analysis, the risk of BTI was best predicted by neutralizing antibody and S2-specific interferon gamma responses. In conclusion, T cell responses may help compensate for the suboptimal antibody response to booster vaccination in kidney transplant recipients. Further studies are needed to confirm these findings.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , Cohort Studies , Interferon-gamma , Kidney Transplantation/adverse effects , Prospective Studies , Antibodies, Neutralizing , Antibodies, Viral , Breakthrough Infections , Immunoglobulin G , Transplant Recipients , Vaccination
3.
Open Forum Infect Dis ; 9(11): ofac554, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2152125

ABSTRACT

Background: The basis of the less severe clinical presentation of coronavirus disease 2019 (COVID-19) in children as compared with adults remains incompletely understood. Studies have suggested that a more potent boosting of immunity to endemic common cold coronaviruses (HCoVs) may protect children. Methods: To test this hypothesis, we conducted a detailed analysis of antibodies induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children aged 2 months to 14 years. Results: Younger children had higher titers of antibodies to SARS-CoV-2 receptor binding domain (RBD), S1 but not S2 domain, and total spike (S) protein, higher avidity RBD immunoglobulin G, and higher titers of neutralizing and complement-activating antibodies as compared with older children. In contrast, older children had higher titers of antibodies to HCoVs, which correlated with antibodies to the SARS-CoV-2 S2 domain but not with neutralizing or complement-activating antibodies. Conclusions: These results reveal a unique capacity of young children to develop effector antibody responses to SARS-CoV-2 infection independently of their immunity to HCoVs.

4.
Clin Infect Dis ; 75(1): e695-e704, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2017792

ABSTRACT

BACKGROUND: Residents of nursing homes (NHs) are at high risk of coronavirus disease 2019 (COVID-19)-related disease and death and may respond poorly to vaccination because of old age and frequent comorbid conditions. METHODS: Seventy-eight residents and 106 staff members, naive to infection or previously infected with severe acute respiratory syndrome coronavirus (SARS-CoV-2), were recruited in NHs in Belgium before immunization with 2 doses of 30 µg BNT162b2 messenger RNA (mRNA) vaccine at days 0 and 21. Binding antibodies (Abs) to SARS-CoV-2 receptor-binding domain (RBD), spike domains S1 and S2, RBD Ab avidity, and neutralizing Abs against SARS-CoV-2 wild type and B.1.351 were assessed at days 0, 21, 28, and 49. RESULTS: SARS-CoV-2-naive residents had lower Ab responses to BNT162b2 mRNA vaccination than naive staff. These poor responses involved lower levels of immunoglobulin (Ig) G to all spike domains, lower avidity of RBD IgG, and lower levels of Abs neutralizing the vaccine strain. No naive residents had detectable neutralizing Abs to the B.1.351 variant. In contrast, SARS-CoV-2-infected residents had high responses to mRNA vaccination, with Ab levels comparable to those in infected staff. Cluster analysis revealed that poor vaccine responders included not only naive residents but also naive staff, emphasizing the heterogeneity of responses to mRNA vaccination in the general population. CONCLUSIONS: The poor Ab responses to mRNA vaccination observed in infection-naive NH residents and in some naive staff members suggest suboptimal protection against breakthrough infection, especially with variants of concern. These data support the administration of a third dose of mRNA vaccine to further improve protection of NH residents against COVID-19.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunoglobulin G , Nursing Homes , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
5.
Sci Adv ; 8(28): eabn4188, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1949919

ABSTRACT

Soluble angiotensin-converting enzyme 2 (ACE2) constitutes an attractive antiviral capable of targeting a wide range of coronaviruses using ACE2 as their receptor. Using structure-guided approaches, we developed a series of bivalent ACE2-Fcs harboring functionally and structurally validated mutations that enhance severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain recognition by up to ~12-fold and remove angiotensin enzymatic activity. The lead variant M81 potently cross-neutralized SARS-CoV-2 variants of concern (VOCs), including Omicron, at subnanomolar half-maximal inhibitory concentration and was capable of robust Fc-effector functions, including antibody-dependent cellular cytotoxicity, phagocytosis, and complement deposition. When tested in a stringent K18-hACE2 mouse model, Fc-enhanced ACE2-Fc delayed death by 3 to 5 days or effectively resolved lethal SARS-CoV-2 infection in both prophylactic and therapeutic settings via the combined effects of neutralization and Fc-effector functions. These data add to the demonstrated utility of soluble ACE2 as a valuable SARS-CoV-2 antiviral and indicate that Fc-effector functions may constitute an important component of ACE2-Fc therapeutic activity.

6.
BMC Immunol ; 23(1): 7, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1745516

ABSTRACT

BACKGROUND: While antibodies can provide significant protection from SARS-CoV-2 infection and disease sequelae, the specific attributes of the humoral response that contribute to immunity are incompletely defined. METHODS: We employ machine learning to relate characteristics of the polyclonal antibody response raised by natural infection to diverse antibody effector functions and neutralization potency with the goal of generating both accurate predictions of each activity based on antibody response profiles as well as insights into antibody mechanisms of action. RESULTS: To this end, antibody-mediated phagocytosis, cytotoxicity, complement deposition, and neutralization were accurately predicted from biophysical antibody profiles in both discovery and validation cohorts. These models identified SARS-CoV-2-specific IgM as a key predictor of neutralization activity whose mechanistic relevance was supported experimentally by depletion. CONCLUSIONS: Validated models of how different aspects of the humoral response relate to antiviral antibody activities suggest desirable attributes to recapitulate by vaccination or other antibody-based interventions.

7.
Elife ; 112022 03 15.
Article in English | MEDLINE | ID: covidwho-1742932

ABSTRACT

Preexisting antibodies to endemic coronaviruses (CoV) that cross-react with SARS-CoV-2 have the potential to influence the antibody response to COVID-19 vaccination and infection for better or worse. In this observational study of mucosal and systemic humoral immunity in acutely infected, convalescent, and vaccinated subjects, we tested for cross-reactivity against endemic CoV spike (S) protein at subdomain resolution. Elevated responses, particularly to the ß-CoV OC43, were observed in all natural infection cohorts tested and were correlated with the response to SARS-CoV-2. The kinetics of this response and isotypes involved suggest that infection boosts preexisting antibody lineages raised against prior endemic CoV exposure that cross-react. While further research is needed to discern whether this recalled response is desirable or detrimental, the boosted antibodies principally targeted the better-conserved S2 subdomain of the viral spike and were not associated with neutralization activity. In contrast, vaccination with a stabilized spike mRNA vaccine did not robustly boost cross-reactive antibodies, suggesting differing antigenicity and immunogenicity. In sum, this study provides evidence that antibodies targeting endemic CoV are robustly boosted in response to SARS-CoV-2 infection but not to vaccination with stabilized S, and that depending on conformation or other factors, the S2 subdomain of the spike protein triggers a rapidly recalled, IgG-dominated response that lacks neutralization activity.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Cross Reactions/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibody Specificity/immunology , Host-Pathogen Interactions/immunology , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Neutralization Tests , Vaccination
8.
J Infect Dis ; 226(7): 1204-1214, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-1699594

ABSTRACT

BACKGROUND: A longitudinal study was performed to determine the breadth, kinetics, and correlations of systemic and mucosal antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: Twenty-six unvaccinated adults with confirmed coronavirus disease 2019 (COVID-19) were followed for 6 months with 3 collections of blood, nasal secretions, and stool. Control samples were obtained from 16 unvaccinated uninfected individuals. SARS-CoV-2 neutralizing and binding antibody responses were respectively evaluated by pseudovirus assays and multiplex bead arrays. RESULTS: Neutralizing antibody responses to SARS-CoV-2 were detected in serum and respiratory samples for 96% (25/26) and 54% (14/26), respectively, of infected participants. Robust binding antibody responses against SARS-CoV-2 spike protein and S1, S2, and receptor binding (RBD) domains occurred in serum and respiratory nasal secretions, but not in stool samples. Serum neutralization correlated with RBD-specific immunoglobulin (Ig)G, IgM, and IgA in serum (Spearman ρ = 0.74, 0.66, and 0.57, respectively), RBD-specific IgG in respiratory secretions (ρ = 0.52), disease severity (ρ = 0.59), and age (ρ = 0.40). Respiratory mucosal neutralization correlated with RBD-specific IgM (ρ = 0.42) and IgA (ρ = 0.63). CONCLUSIONS: Sustained antibody responses occurred after SARS-CoV-2 infection. Notably, there was independent induction of IgM and IgA binding antibody and neutralizing responses in systemic and respiratory compartments. These observations have implications for current vaccine strategies and understanding SARS-CoV-2 reinfection and transmission.


Subject(s)
COVID-19 , Adult , Antibodies, Neutralizing , Antibodies, Viral , Humans , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Longitudinal Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
9.
Science ; 375(6584): 1041-1047, 2022 03 04.
Article in English | MEDLINE | ID: covidwho-1685477

ABSTRACT

Heterologous prime-boost immunization strategies have the potential to augment COVID-19 vaccine efficacy. We longitudinally profiled severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-specific serological and memory B cell (MBC) responses in individuals who received either homologous (ChAdOx1:ChAdOx1) or heterologous (ChAdOx1:mRNA-1273) prime-boost vaccination. Heterologous messenger RNA (mRNA) booster immunization induced higher serum neutralizing antibody and MBC responses against SARS-CoV-2 variants of concern (VOCs) compared with that of homologous ChAdOx1 boosting. Specificity mapping of circulating B cells revealed that mRNA-1273 boost immunofocused ChAdOx1-primed responses onto epitopes expressed on prefusion-stabilized S. Monoclonal antibodies isolated from mRNA-1273-boosted participants displayed overall higher binding affinities and increased breadth of reactivity against VOCs relative to those isolated from ChAdOx1-boosted individuals. Overall, the results provide molecular insight into the enhanced quality of the B cell response induced after heterologous mRNA booster vaccination.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , ChAdOx1 nCoV-19/immunology , Memory B Cells/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adult , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibody Specificity , ChAdOx1 nCoV-19/administration & dosage , Female , Humans , Immunization Schedule , Immunization, Secondary , Immunogenicity, Vaccine , Male , Middle Aged , Protein Conformation , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry
10.
Front Immunol ; 11: 618685, 2020.
Article in English | MEDLINE | ID: covidwho-1389172

ABSTRACT

Understanding humoral immune responses to SARS-CoV-2 infection will play a critical role in the development of vaccines and antibody-based interventions. We report systemic and mucosal antibody responses in convalescent individuals who experienced varying severity of disease. Whereas assessment of neutralization and antibody-mediated effector functions revealed polyfunctional antibody responses in serum, only robust neutralization and phagocytosis were apparent in nasal wash samples. Serum neutralization and effector functions correlated with systemic SARS-CoV-2-specific IgG response magnitude, while mucosal neutralization was associated with nasal SARS-CoV-2-specific IgA. Antibody depletion experiments support the mechanistic relevance of these correlations. Associations between nasal IgA responses, virus neutralization at the mucosa, and less severe disease suggest the importance of assessing mucosal immunity in larger natural infection cohorts. Further characterization of antibody responses at the portal of entry may define their ability to contribute to protection from infection or reduced risk of hospitalization, informing public health assessment strategies and vaccine development efforts.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Humoral/immunology , Immunity, Mucosal/immunology , Nasal Mucosa/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Convalescence , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Young Adult
11.
mBio ; 12(2)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1195826

ABSTRACT

Convalescent plasma is a promising therapy for coronavirus disease 2019 (COVID-19), but the antibody characteristics that contribute to efficacy remain poorly understood. This study analyzed plasma samples from 126 eligible convalescent blood donors in addition to 15 naive individuals, as well as an additional 20 convalescent individuals as a validation cohort. Multiplexed Fc Array binding assays and functional antibody response assays were utilized to evaluate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody composition and activity. Donor convalescent plasma samples contained a range of antibody cell- and complement-mediated effector functions, indicating the diverse antiviral activity of humoral responses observed among recovered individuals. In addition to viral neutralization, convalescent plasma samples contained antibodies capable of mediating such Fc-dependent functions as complement activation, phagocytosis, and antibody-dependent cellular cytotoxicity against SARS-CoV-2. Plasma samples from a fraction of eligible donors exhibited high activity across all activities evaluated. These polyfunctional plasma samples could be identified with high accuracy with even single Fc Array features, whose correlation with polyfunctional activity was confirmed in the validation cohort. Collectively, these results expand understanding of the diversity of antibody-mediated antiviral functions associated with convalescent plasma, and the polyfunctional antiviral functions suggest that it could retain activity even when its neutralizing capacity is reduced by mutations in variant SARS-CoV-2.IMPORTANCE Convalescent plasma has been deployed globally as a treatment for COVID-19, but efficacy has been mixed. Better understanding of the antibody characteristics that may contribute to its antiviral effects is important for this intervention as well as offer insights into correlates of vaccine-mediated protection. Here, a survey of convalescent plasma activities, including antibody neutralization and diverse effector functions, was used to define plasma samples with broad activity profiles. These polyfunctional plasma samples could be reliably identified in multiple cohorts by multiplex assay, presenting a widely deployable screening test for plasma selection and investigation of vaccine-elicited responses.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibody Specificity , Antibody-Dependent Cell Cytotoxicity , Antigens, Viral/immunology , Biophysical Phenomena , Cohort Studies , Complement Activation , Convalescence , Female , Humans , Immunization, Passive , Male , Middle Aged , Phagocytosis , Young Adult , COVID-19 Serotherapy
12.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: covidwho-1166661

ABSTRACT

SARS-CoV-2 (CoV2) antibody therapies, including COVID-19 convalescent plasma (CCP), monoclonal antibodies, and hyperimmune globulin, are among the leading treatments for individuals with early COVID-19 infection. The functionality of convalescent plasma varies greatly, but the association of antibody epitope specificities with plasma functionality remains uncharacterized. We assessed antibody functionality and reactivities to peptides across the CoV2 and the 4 endemic human coronavirus (HCoV) genomes in 126 CCP donations. We found strong correlation between plasma functionality and polyclonal antibody targeting of CoV2 spike protein peptides. Antibody reactivity to many HCoV spike peptides also displayed strong correlation with plasma functionality, including pan-coronavirus cross-reactive epitopes located in a conserved region of the fusion peptide. After accounting for antibody cross-reactivity, we identified an association between greater alphacoronavirus NL63 antibody responses and development of highly neutralizing antibodies against CoV2. We also found that plasma preferentially reactive to the CoV2 spike receptor binding domain (RBD), versus the betacoronavirus HKU1 RBD, had higher neutralizing titer. Finally, we developed a 2-peptide serosignature that identifies plasma donations with high anti-spike titer, but that suffer from low neutralizing activity. These results suggest that analysis of coronavirus antibody fine specificities may be useful for selecting desired therapeutics and understanding the complex immune responses elicited by CoV2 infection.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Coronavirus/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibody Specificity , Coronavirus/classification , Coronavirus/genetics , Cross Reactions , Endemic Diseases , Genome, Viral , Humans , Immunization, Passive , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/genetics , Immunodominant Epitopes/immunology , Models, Molecular , Pandemics , SARS-CoV-2/genetics , Species Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
13.
medRxiv ; 2020 Sep 18.
Article in English | MEDLINE | ID: covidwho-808965

ABSTRACT

Convalescent plasma has emerged as a promising COVID-19 treatment. However, the humoral factors that contribute to efficacy are poorly understood. This study functionally and phenotypically profiled plasma from eligible convalescent donors. In addition to viral neutralization, convalescent plasma contained antibodies capable of mediating such Fc-dependent functions as complement activation, phagocytosis and antibody-dependent cellular cytotoxicity against SARS-CoV-2. These activities expand the antiviral functions associated with convalescent plasma and together with neutralization efficacy, could be accurately and robustly from antibody phenotypes. These results suggest that high-throughput profiling could be used to screen donors and plasma may provide benefits beyond neutralization.

14.
medRxiv ; 2020 Aug 06.
Article in English | MEDLINE | ID: covidwho-721078

ABSTRACT

Understanding humoral immune responses to SARS-CoV-2 infection will play a critical role in the development of vaccines and antibody-based interventions. We report systemic and mucosal antibody responses in convalescent individuals who experienced varying disease severity. Robust antibody responses to diverse SARS-CoV-2 antigens and evidence of elevated responses to endemic CoV were observed among convalescent donors. SARS-CoV-2-specific IgA and IgG responses were often negatively correlated, particularly in mucosal samples, suggesting subject-intrinsic biases in isotype switching. Assessment of antibody-mediated effector functions revealed an inverse correlation between systemic and mucosal neutralization activity and site-dependent differences in the isotype of neutralizing antibodies. Serum neutralization correlated with systemic anti-SARS-CoV-2 IgG and IgM response magnitude, while mucosal neutralization was associated with nasal SARS-CoV-2-specific IgA. These findings begin to map how diverse Ab characteristics relate to Ab functions and outcomes of infection, informing public health assessment strategies and vaccine development efforts.

SELECTION OF CITATIONS
SEARCH DETAIL